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Abstract 
This paper describes the development, optimization, simulation, and practical FPGA 

(Xilinx Spartan-3E X3S500E) implementation of a new parallel algorithm for the NSSP 
(single source shortest path problem with nonnegative edge weights). Its run time has an 
upper bound of O(min(n, ε)), and it uses hardware resources on the order of O(m), the 
theoretical optimum. It was applied to standard benchmark problem instances and its 
performance was compared to that of the fastest general case implementation of Dijkstra’s 
algorithm – O(m + n log n). For practical instances of the problem, the propagation delay 
algorithm required on the order of 200-300 times fewer clock cycles. The hardware 
implementation achieved is fully scalable, and the paper proposes a second-generation chip 
architecture which, when implemented, will make the device efficiently problem-
reconfigurable in real-time. The relatively low cost of the chip combined with its power and 
flexibility make it broadly applicable in a wide variety of laboratory and field situations. 
Moreover, the underlying algorithm is the product of a new parallel computing paradigm, 
which will be termed “accelerated propagation delay” because it is based on controlling and 
recording the relative speed of signals propagating in parallel through a network. This 
paradigm is generalizable to solve other problems that are even more computationally 
intensive than pathfinding, including the NP-complete subset sum and Hamiltonian path 
problems. An accelerated design to solve the first of these problems was developed as part of 
this project and is proposed briefly in the discussion. 
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1 Introduction 

1.1 Overview 

Finding the shortest paths between points on a graph is one of the most fundamental and 

widely applicable optimization problems in computer science.  Directly or as subproblems, 

shortest path problems are critically important in fields ranging from network routing to 

autonomous system control to computational biology to embedded system design [1], [2], [3]. 

Frequently, the speed with which shortest path problems can be resolved limits the rate of much 

larger operations.  

Previous study of the shortest path problem has largely been limited to sequential 

algorithms and, more recently, parallel algorithms implemented on general-purpose architectures 

[4], [1]. However, the former are restricted by an upper bound of O(m + nD)1 [5], and attempts at 

the latter either are only applicable to specific instances of the problem, or parallelism degrades 

as problem size increases. Furthermore, fully fledged CPUs are bulky and expensive – this 

renders large-scale parallelism impractical for many applications. 

The introduction of FPGAs (Field-Programmable Gate Arrays, See Section 1.2) [6] now 

provides a platform for low-cost, massively parallel processing. Recently, a number of VLSI 

(Very Large Scale Integration) solutions to the shortest path have been proposed, but their 

complexity (time and/or space) is inferior to that of algorithms implemented on general-purpose 

architectures. Moreover, their actual performance against standard benchmarks has not been not 

extensively studied [2]. 

                                                
1 Here, n is |V|, the number of vertices (nodes) in the graph, m is |E|, the number of edges (weighted arcs connecting 
nodes), and D is the additional complexity the data structure backing the algorithm incurs. 
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This paper describes the development, optimization, simulation, and practical FPGA 

(Xilinx Spartan-3E X3S500E) implementation of a new, massively parallel algorithm to solve 

the NSSP (single source shortest path problem with nonnegative edge weights). Its run time has 

an upper bound of O(min(n, ε)),2 and it uses hardware resources on the order of O(m), the 

theoretical optimum. It was applied to standard benchmark problem instances [5] and its 

performance was compared to that of the fastest general case implementation of Dijkstra’s 

algorithm – O(m + n log n) [7]. For practical instances of the problem, the propagation delay 

algorithm required on the order of hundreds of times fewer clock cycles. The hardware 

implementation achieved is fully scalable, and this paper details a second-generation chip 

architecture which, when implemented, will make the device efficiently problem-reconfigurable 

in real-time. The relatively low cost of the chip combined with its power and flexibility make it 

broadly applicable in a wide variety of laboratory and field situations. 

Moreover, the underlying algorithm is the product of a new parallel computing paradigm, 

which will be termed “accelerated propagation delay” because it is based on controlling and 

recording the relative speed of signals propagating in parallel through a network. This paradigm 

is generalizable to solve other problems that are even more computationally intensive than 

pathfinding, including the NP-complete subset sum and Hamiltonian path problems [10]. An 

accelerated design to solve the first of these problems was developed as part of this project and is 

proposed briefly in the discussion. 

                                                
2 ε is the eccentricity of the source node in the single source shortest path problem. See Section 1.3 
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1.2  Field-Programmable Gate Arrays (FPGAs) 

Field-programmable gate arrays, or FPGAs, are reconfigurable, programmable logic 

devices that easily allow for parallel processing. They consist of an array of configurable logic 

blocks (CLBs) wired together via a set of programmable interconnect modules. By making use 

of the fact that all combinational logic can be represented as a Boolean sum of products, these 

devices achieve hardware-efficiency even while retaining the ability to be programmed to 

represent nearly any synthesizable digital microcircuit [6]. 

1.3 Shortest Path Problems: Formal Definitions 

There are many classes of shortest path problems. Although the algorithm described in 

this paper can be generalized to solve other instances, this paper focuses on its performance in 

resolving the single source shortest path problem with non-negative edge weights, or NSSP. The 

NSSP is easily understood in terms of the single pair shortest path problem (SPSP), the general 

problem of finding a path from one node of a graph to another such that the sum of the weights 

of its constituent edges is minimal. Rigorously, given a weighted, directed graph G = (V, E) (that 

is, a set V of vertices and a set E of edges), a real-valued edge weight function : E → R, and 

one vertex s V, the SPSP seeks a path P from s to some vertex v V such that the following 

expression (“length” of path P) is minimized:  

The NSSP extends this: it seeks the shortest paths between a source node s and every 

vertex v of the graph. The solution is typically represented with a shortest paths tree (SPT). The 

SPT of G is defined to be a spanning tree rooted at s such that the reversal of any path v to s is a 

shortest path from s to v. Also, NSSP restricts the range of  to nonnegative real numbers [7]. 
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1.4 Prior Research 

Of the many sequential techniques to solve the NSSP, Dijkstra’s algorithm [7] provides 

the best general-case performance (amortized run time of O(m + n log n) when implemented 

with a Fibonacci heap) [4], [5].  Hence, it is currently the standard algorithm employed to solve 

shortest path problems that arise in many fields (very notably, it is employed by the OSPF 

network routing protocol) [1]. As a result of its ubiquity, many attempts have been made to 

outperform it. 

Recently, various parallel approaches to the NSSP have been proposed [1], [2], [9] and 

some were demonstrated to perform better than Dijkstra’s algorithm. This paper describes the 

development of one such method, based on the paradigm of propagation delay. Although the 

paradigm and method were created independently in the course of this project in 2009, 

subsequent literature search revealed that other investigators, apparently unknown to one 

another, hit upon certain aspects of the same approach between 2006 and 2008.  

Prasad et al. described NATR, an FPGA-based shortest path solution [9]. The algorithm 

they derived is logically similar to the non-accelerated version of the propagation delay 

algorithm presented below, so in most cases it requires significantly more clock cycles than the 

accelerated version of this algorithm (performance is O(ε) vs. O(min(n, ε)) for NSSP).   

Ishikawa et al. [1] arrived at an algorithm that is, in the abstract, equivalent to the 

accelerated propagation delay technique put forth in Section 2.3, but they implemented it in a 

different form on a general purpose parallel DAPDNA-2 processor instead of an FPGA. Their 

logic required the generation of an n by n matrix circuit, and their high-level hardware platform 

had only had a limited number of processing elements (376), so they had to divide the problem 
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into segments then recombine the results. Therefore, their implementation was less hardware-

efficient (O(n2) as opposed to O(m)), less scalable, and more expensive. 

Oltean et al. recognized the general concept that many difficult computational problems 

can be solved by analyzing delayed signals. They employed it to build devices that used delays 

in propagation of light through fiber optics to solve certain NP-complete problems (including 

subset sum, Hamiltonian path, and exact cover) [10].  These implementations have considerable 

practical limitations however (e.g., difficult to reconfigure, no acceleration possible). 

2 Parallel, Propagation-Delay Algorithm for Shortest Path 

2.1 Propagation Delay 

The general paradigm of propagation delay considers a graph as a network through which 

a signal may permeate, starting at a source node (or nodes in some applications). The signal’s 

propagation through each edge of the graph is delayed by an amount proportional to the edge’s 

weight. In outline form, the paradigm is: (1) Express the problem (in the abstract) as a weighted 

graph. (2) Start a signal at a particular node (or multiple nodes for some applications), and allow 

it to propagate through nodes making some record of signal arrivals at each node from each 

edge. (3) Analyze recorded arrival information to solve the problem. Frequently, it is necessary 

to trace the progression of the signal backwards through the graph to find the answer. 

Details of the structure of each individual problem can be used to optimize performance. 

In general, since delayed signals are not sequentially dependent upon one another and are easily 
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modeled in straightforward hardware (either synchronously or asynchronously3), algorithms 

derived from this paradigm are extremely amenable to massively parallel execution. 

2.2 Naïve Algorithm for NSSP 

Direct application of the propagation delay paradigm to the NSSP yields a parallel 

algorithm that executes rapidly for graphs with small, integer edge weights. While far from 

optimal, the naïve algorithm is straightforward to understand and forms the basis for the 

accelerated algorithm. 

To comprehend its behavior, consider the following example (Fig. 1). In the sample 

graph4, A has been chosen as the source vertex. The signal is said to begin at A. A node that the 

signal has reached will be considered active. All edges departing from an active node will also be 

considered active. Two numbers correspond to each edge e E. The first represents the value of 

its waiting function w(e), which reflects the position of the signal along the edge, and the second 

represents its assigned weight, or length, (e). Initially, before any cycles of the clock, w(e) = 

(e). On each clock cycle, the value of w(e) for each active edge decrements by 1. This decrease 

corresponds to the propagation of the signal along the edge. When the value of the waiting 

function of a given edge reaches 0, the signal propagating along it can be said to have reached 

the next node (at this point, it ceases counting down). That target node then becomes active, and 

the waiting functions of the edges departing it begin to decrement. Thus, the signal eventually 

will reach every node of a connected graph. 

                                                
3 A synchronous circuit is orchestrated by universal clock; an asynchronous circuit either has no clock or is divided 
into independent, autonomous components [8].  
4 An undirected graph is shown for simplicity. The actual algorithm uses symmetric pairs of directed edges to 
simulate undirectedness.  
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When a node v is first activated by an edge, the identifier of the node at the originating 

end of that edge is logged by v as its PREV (the node preceding it in the final SPT).5 Once every 

node has been reached, the list of PREV values for the entire graph is outputted. The list 

constitutes an SPT – any shortest path from s can be identified by following PREV values 

backwards from a given vertex to s.  

Since every clock cycle brings a signal one unit farther away from the source node, and 

this algorithm solves the NSSP when every node in the graph is reached, the run time complexity 

of this algorithm is O(ε), where ε is the (weighted) eccentricity6 of the source node – by the time 

the node farthest from the source has been reached, all other nodes necessarily have been. Hence, 

for graphs with small edge weights, this algorithm is acceptable (even rapid), though it balks at 

larger cases.  

The memory (and as will be shown, hardware) footprint of this algorithm is extremely 

small. O(1) values must be registered for each of the m edges in the graph, and O(1) values must 

be registered for each of the n nodes, so it appears that the hardware/memory usage is on the 

order of O(n + m). However, since to be considered at all, a node must be connected to at least 

one edge, the m term can be seen as subsuming the n without loss of generality. Thus the 

complexity can actually be considered to be O(m). This is the theoretical minimum resource 

usage to resolve the shortest path problem: no more data must be stored than that which is 

required to represent the problem and solution. 

                                                
5 Note: If multiple signals arrive at a node at the same time, a single PREV value is arbitrarily chosen from among 
them. Also, since PREV is never overwritten once set, edges incident to a node that has already been reached are 
deactivated – the arrival of a later signal from them would do nothing; only the first signal is logged. 
6 The eccentricity of a vertex v is defined to be the “maximum graph distance between v and any other vertex u” 
[http://mathworld.wolfram.com/GraphEccentricity.html] 



Cole, Jacob 
 

8  

 
Fig. 1: Naïve NSSP solution by propagation delay in a 5-node graph. The source node 
is A. Initial state and states over the course of 6 clock cycles are shown (elapsed “ticks” –
clock cycles – denoted by T). Active nodes are depicted as red. The position of the signal 
in the graph is depicted by the red lines extending along the edges, and the value of the 
waiting function w(e) is shown by the numerators in the fractions beside the edges. The 
denominators reflect (e) – edge weights. Edges that are gray have been deactivated 
because their destination has already been reached from another edge. The arrows 
extending from nodes that have been activated graphically depict PREV – following them 
backwards as if they constituted a vector field will trace the shortest path to s from any 
node. By T=6, the set of arrows constitutes an SPT. 
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2.3 Accelerated Algorithm 

For many problems with large edge weights, the naïve algorithm is clearly impractical 

due to its O(ε) run time. Fortunately, by re-examining the nature of the signal delays in the graph, 

performance can be improved by an order of magnitude. Conceptually, the accelerated algorithm 

possesses only one difference from the naïve: on each tick of the clock, w(e) for all active edges 

is not simply decremented by 1, but by the maximum number possible.  This maximum number, 

which will be used as the weight decrement, is equal to the minimum, nonzero value of w from 

among all active edges of the graph. Thus, the algorithm behaves as if time has skipped forward 

to the next “activation event.” This guarantees that on each clock cycle, at least one edge (the 

active edge of minimal w) will signal its destination node. Since the problem is solved when n 
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nodes have been activated (at this point, all PREV values will have been assigned), the accelerated 

algorithm has an additional upper bound on its run time of O(n).7 This makes its overall worst-

case8 run time O(min(n, ε)), where the function min returns the lesser of its two arguments. 

Furthermore, when implemented properly (see Section 4), its memory/hardware usage is, like the 

naïve algorithm, on the optimal order of O(m) – no additional data must be stored. The 

accelerated algorithm is illustrated in Fig. 2.  

3 FPGA Architecture: Accelerated Propagation Delay Algorithm 

3.1 Static Architecture  

It is relatively straightforward to configure an FPGA to apply the accelerated propagation 

delay algorithm to a specific graph. In circumstances where on-the-fly reconfigurability of the 

graph’s topology is not necessary, the static architecture described in Fig. 3 is practical and 

efficient.  

In cases where multiple edges activate a node at the same time, the previous node 

identifier from any edge would give a valid SPT, but only one is needed. A state machine within 

each node is employed to select a single one. As soon as a node is activated, the state machine, 

executing in parallel with the rest of the program, begins sequentially searching through the 

node’s incident edges to find a single one that has reached zero. PREV then assumes the value of 

the identifier passed in through that edge. Since the state machine executes in parallel with the 

rest of the device, it does not negatively impact run time complexity. It is of O(1) size and does 

                                                
7 The minimum edge weight can be found in O(1) with appropriate FPGA architecture. See Section 3. 
8 If more than one node is activated on each tick of time, as is frequently the case when edge weights are small or 
when the graph is not sparse, run times can be far lower. See Section 4: Performance. 
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not generate significant clock skew as a daisy chain of combinational comparators would. This is 

a practical improvement over Prasad [9]. 

 

 
 

Fig. 3: Static Architecture for Accelerated NSSP Solver for a 5-Node Graph (simplified). Graph 
represented by above block diagram is same as that in Fig. 1 and Fig. 2. Again, s = A. State T=2 from 
Fig. 2 is depicted. FPGA configuration is directly isomorphic to graph represented. Node modules 
(labeled A, B, C...) are connected by edge modules, the shaded boxes embedded within the arrows 
between nodes. Edge modules possess a register containing w(e) for each edge. (The initial value of 
each w(e) is (e).) An input wire on each edge (ORIGIN_ACTIVE – above labeled only for DE and ED) 
reads the ACTIVE register of the node from which it originated. Another wire (TARGET_ACTIVE), not 
shown, connects the ACTIVE value of each node to each incident edge. Whether an edge will 
decrement is determined by the value of the expression ORIGIN_ACTIVE && !TARGET_ACTIVE. 
Above, edges that will decrement on the next tick are depicted in red, those that will not are gray. The 
current w decrement for active edges (minimum value from among all red nodes) is calculated in real-
time by the combinational, comparator tree-based Time-Advance Minimizer module (see Fig. 4). 

Additionally, each node, v, possesses a multi-bit register PREV. As discussed above, it holds 
the identifier of the node that activated v (X represents a “don’t care” state). When an edge’s w value 
reaches 0, a bus transmits the value of PREV as well as a signal indicating that its down-counting has 
completed to its destination node. 
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Fig 4: Architecture for Time-Advance Minimizer 
Module.  Uses a combinational logic binary 
comparator tree to find minimum element in an input 
set (in this application, minimizes w(e)). n input buses 
map to 1 output bus. n = 8 shown. Gate count is on the 
order of O(n) and depth (and hence skew incurred) is 
O(log n). However, in terms of clock cycles, run time is 
effectively O(1). 
 

3.2 Dynamically Reconfigurable 

Architecture 

An efficient FPGA architecture 

that can be reconfigured at runtime to 

solve problems in graphs of differing 

topologies is presented in simplified form 

below. 

The top level architecture consists 

of a fully interconnected set of modules that 

represent nodes. Nodes internally handle the 

task of representing the edges departing 

from them. To ensure that the architecture can represent any possible graph, all nodes have the 

potential to activate one another. This wiring can be done efficiently on an FPGA because its 

programmable interconnects are natively structured to allow for all possible connections. As 

depicted in Fig. 5, for every possible pair of nodes (x, y) a line from the output bus 

ACT_NODES of x feeds into the ACTIVATE input bus of y.  

The Time Advanced Minimizer module computes the “accelerated time” step size 

(weight decrement), which is used internally by the node modules. It uses a comparator tree as in 

Fig. 4 to calculate the minimum TIME_OUT value (the minimum w value) from among all 

nodes and sends the number to each node via the TIME_IN bus. Since, in this architecture, nodes 

are internally aware of the current minimum w value from among all their departing edges (this 

is outputted via TIME_OUT – see below), only n values must be compared by the tree. This 

min(...) 
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min(...) 
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reduces tree depth, and hence clock skew, to O(log n), allowing for faster maximum clock 

frequency than in the static design. 

Within the Node 

The edges departing a given node n are represented within the node module (Fig. 6). 

Their weights and destinations are stored in a FIFO (First-In, First-Out) data structure, ordered as 

a min priority queue keyed by edge weight  (thus, the smallest (e) from among edges 

departing a given node is listed first).  The value corresponding to each edge weight key is the 

list of node identifiers representing the destinations of the edges departing n that have a weight 

of .9  Thus, all edges of a given weight are listed beneath the key corresponding to that weight 

in the FIFO. This data structure is populated at initialization or on-the-fly via the input bus 

INIT_CONF. This representation requires one unit of FPGA resources per edge; hence, the 

hardware usage of the architecture is still on the order of O(m).  

When an activate signal enters a given node n (i.e. if any line in the ACTIVATE bus is 

pulled high), an internal (Mealy) state machine registers the event. It initiates a minor state 

machine to find PREV, as in the static architecture. It also enables the local time accumulator, 

which, on every subsequent clock cycle increments its current value by the current “accelerated 

time” step size (the weight decrement), which is received from the TIME_IN input bus. 

The local time accumulator is wired to the negative input of a subtractor module. The 

positive input of the subtractor module reads the current weight of the item at the head of the 

FIFO. Thus, the output of the subtractor (which is fed to the state machine and to TIME_OUT) is 

equal to the minimum w value from among edges departing n. This means that the event of the 

                                                
9 For graphs with a high ratio of edges to nodes, it is more efficient to simply represent this list as a bitset.  
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subtractor's output reaching 0 corresponds to the event of a signal's arrival at some other node, 

brought about by way of an edge originating at n. 

 This zeroing event is detected by the node state machine, which signals the FIFO to pop 

the head element of the queue and also sends a signal through the output bus ACT_NODES to 

bring about the activation of the destination nodes enumerated in the value portion of that head 

element. The new head element of the FIFO represents the edges of next smallest  (weight) 

value – the edges whose waiting functions will next reach zero. 

 

 
Fig. 5: Dynamically Reconfigurable Top-Level Architecture (simplified).  Instance above holds 4 
nodes. ACT_NODES buses are depicted as expanded to reveal connections. ACTIVATE buses keep 
signals from different input nodes separate – this is necessary when finding PREV values.  
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The dynamically reconfigurable architecture can be scaled to the necessary size simply 

by adding and wiring in more node modules. The design also enables efficient hardware reuse.  

Since many graphs do not have every node connected to every node [5] (e.g roadmap modeling 

[2]), few, if any nodes require a FIFO of length n. Thus, resource usage can be improved by 

limiting the lengths of a certain subset of the FIFOs. The extra resources can be used to enable 

the device to support graphs with greater numbers of nodes.  

 
Fig. 6: Dynamically Reconfigurable Architecture: Node Block Diagram (simplified). 
Above image diagram depicts initial state T=0 (after graph has been loaded) of node B from 
same graph in Fig. 1, 2, and 3. CLK is the clock input signal.  
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4 Testing and Results: Performance 

As proof of concept, the static architecture was coded in Verilog, simulated and verified 

in the behavioral simulation program ModelSim, then implemented on a Xilinx Spartan-3E 

X3S500E. Test data for numerous small cases of the NSSP (fewer than 30 nodes) were run and 

output to a custom C++ program via a serial line using the RS-232 protocol. It was demonstrated 

that the results were accurate, and that the number of clock cycles required matched those 

predicted in theory and simulation.  

To determine the speed-up afforded by the parallel propagation delay algorithm as 

implemented on the FPGA, an isomorphic Java-based simulation was developed and applied to 

the standard Random4-n10 class of test cases [5]. The NSSP SPT was computed from 10 

randomly selected source nodes and the run time results were averaged. Performance was 

compared with that of a standard, fast, Fibonacci heap implementation of Dijkstra’s algorithm. 

To perform a fair comparison, a Java implementation of Dijkstra’s algorithm was created that 

counted a virtual “clock cycle” for every group of O(1) operations.11 The Fibonacci heap used 

was implemented per Cormen et al. [11] to have O(1) decrease_key and O(log n) amortized 

remove_min. 

 Results of the simulation are shown in Table 1. The propagation delay algorithm solved 

the NSSP on all graphs using on the order of 200-300 times fewer clock cycles.  As n increased, 

run time for the propagation delay algorithm increased approximately linearly, as predicted, 

whereas Dijkstra’s algorithm increased at a rate of approximately O(m + n log n), also as 

                                                
10 Random4-n uses random graphs with m = 4n. Range of arc lengths is [0, . . . ,n].  Values of n used were 2i for i = 
{10, . . . , 17}.  
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predicted. Thus, the more nodes present in the graph, the greater the advantage of the 

propagation delay algorithm over Dijkstra’s.  

Table 1: Propagation Delay vs. Dijkstra's Algorithm: Run Time 
Comparison on Random4-n Benchmark Cases 

     
Nodes (n) Edges (m) Clock Cycles  

n m Dijkstra* Prop Delay† Ratio 
1,024 4,096 159,296 750 212.39 
2,048 8,192 353,580 1,493 236.83 
4,096 16,384 779,182 2,998 259.90 
8,192 32,768 1,699,358 6,025 282.05 

16,384 65,536 3,681,307 12,028 306.06 
32,768 131,072 7,930,726 24,079 329.36 
65,536 262,144 16,985,653 48,282 351.80 

131,072 524,288 36,226,452 97,825 370.32 
     
*Estimated Dijkstra Clock Cycles   
†Actual Propagation Delay Clock Cycles  

 

5 Discussion 

This project demonstrated the theoretical viability and practical utility of the new parallel 

computing paradigm of accelerated propagation delay by applying it to create an algorithm to 

solve the NSSP shortest path problem in O(min(n, ε)) time with O(m) resources, and 

implementing it in a practical, scalable form on an FPGA. It also described in detail how to 

extend the architecture to make the device efficiently reconfigurable on-the-fly.  

This work has both near and long-term consequences. It is immediately applicable to a 

host of common computational problems – processors such as this could be employed in devices 

including those for gene analysis, missile interception, wheelchair navigation, network routing, 

embedded system synthesis, and more [2], [3], [12]. Furthermore, the paradigm is readily 

                                                                                                                                                       
11 It is not possible to directly compare the performance of algorithms implemented on different platforms since 
differing languages and processors may take varying amounts of time to perform the same operations. 
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generalizable to accelerate the resolution of certain NP-complete problems important in routing, 

cryptography, compiler design, and other fields [13]. 

Among near-term solutions: shortest path problems in which each node has many 

connected edges (such as those which appear in synthesizing complex microcircuitry) can be 

solved particularly rapidly by the propagation delay approach since its complexity is not 

dependent upon m.  In these situations, the observed 200-300 times speed-up ratio over the 

fastest sequential algorithms, whose performance degrades linearly as m increases, could be 

significantly improved. 

If a graph is too large to fit on the device, the propagation delay approach allows it be 

broken into independent subgraphs to be solved separately, then recombined using the method of 

Ishikawa et al. [1]. This is particularly applicable to network routing because relatively isolated 

subnetworks – which can be recombined into the main graph – naturally arise in computer 

network topology. 

Furthermore, the reconfigurable architecture is readily implementable on a dedicated, 

high-speed application-specific integrated circuit (ASIC), because a fixed configuration can load 

graphs of any topology and the design decreases clock skew to O(log n). This makes it practical 

to implement on devices with higher clock speeds than an FPGA. 

The propagation delay paradigm’s long-term implications began to reveal themselves 

even during the development of the solution to the shortest path problem. It became apparent that 

the same type of “accelerated delay” network, with minor modifications, could be used to rapidly 

solve the NP-complete subset sum problem. The subset sum problem asks, in essence: “Given a 

set S of positive integers and a target number T, does there exist a subset of S that sums to T?” 
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Conceptually, the main modifications that have to be made are 1) allow nodes to become 

activated multiple times (by every incoming signal), 2) implement edges in such a way that they 

are able to queue and delay all incident signals, and 3) record all signal arrival times at nodes. 

Any signal that arrives at a dedicated target node after T units of delay have elapsed can be 

traced backward through the graph to its origin – the set of edge weights thus traversed is 

equivalent to the set of integers that solves the problem. (For further information, see, Oltean et 

al. [10], who independently developed a part of this solution – for the yes/no decision problem 

only – and implemented it in a non-accelerable optical network to solve the subset sum problem 

and other, even more difficult NP-complete problems.)   

Whether or not this paradigm ultimately proves widely usable in practical situations, it 

offers inroads and insights into the nature of the computable universe. 
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